Posts

Showing posts from June, 2017

Package structure

Image
Hello! During the first period of GSoC I have worked mostly on analyzing the Matlab structure of the net package in order to guarantee the compatibility throughout the whole project. The focus of the project is on the convolutional neural networks, about which I will write the next post.

Regarding the package structure, the core will be composed by three parts:

Layers:there are 11 types of layersthat I defined as Octave classes, using classdef. These layers can be concatenated in order to create a Layer object defining the architecture of the network. This will be the input for the training function. Training: the core of the project is the training function, which takes as input the data, the layers and some options and returns the network as output. Network:the network object has three methods (activations, classify and predict) that let the user compute the final classification and prediction. 


I have already implemented a draft for the first point, the layers classes [1]. Every l…